Institutskolloquium
Das Institutskolloquium Sommersemester 23
Diese Daten können sich aufgrund neuer Umstände ändern. Bitte lesen Sie regelmäßig unsere aktuellen Meldungen für eventuelle Änderungen. Allgemeine Corona-Updates der Universität Hamburg finden Sie hier: https://www.uni-hamburg.de/newsroom/intern/2020/0131-corona-faq.html.
Das Institutskolloquium wird organisiert von Dr. Marie Wuth.
Das Institutskolloquium findet i. d. R. 14-tägig mittwochs um 17 Uhr c. t. in Präsenz im ESA AS Saal statt. Alle Redner*innen werden vor Ort sein. Wir empfehlen für alle die Vorort-Teilnahme, damit rege Diskussionen entstehen können.
Darüber hinaus gibt es die Möglichkeit, über Zoom an den Sitzungen teilzunehmen:
Thema: Institutskolloquium
Uhrzeit: 17-19 Uhr c.t.. Dies ist ein regelmäßig stattfindendes Meeting.
Datum | Sprecher | Thema |
---|---|---|
05.04.2023 |
Pieter Sjoerd Hasper |
Aristotle’s Constructionist Ontology of Mathematical Objects |
Abstract Aristotle’s ontology of mathematical objects is clearly anti-Platonist, in that he denies that mathematical objects exist independently from physical objects. Mathematical objects, he claims, are physical objects qua mathematical. Ever since Jonathan Lear’s paper on ‘Aristotle’s Philosophy of Mathematics’, this claim has been understood in the context of mathematical proofs: in a proof the mathematician abstracts from the physical features of the particular physical object of the proof, and only considers the (relevant) mathematical features. In order to deal with cases in which the required objects rarely, if at all, exist in physical reality (e.g. polyhedrons), scholars from Lear onwards have tinkered with the notion of abstraction and inserted an element of idealisation in it. There are, however, cases involving infinities, which cannot be thus accommodated within Aristotle’s finitist physics. Moreover, it rests upon an incorrect understanding of Aristotle’s argument in Metaphysics M.3, the chapter in which he lays out his ontology of mathematical objects. By way of a careful analysis of this argument, I will show that for Aristotle mathematical objects as considered in mathematics only exist in thought, and thus in a way do not exist as real objects, but are constructed in thought from primary objects which are present in physical objects, and are also known from them. The realist claim that mathematical objects are physical objects qua mathematical must be understood at the type level, ensuring that mathematical theorems are applicable to physical reality and that there is no harm in this constructionism. |
||
19.04.2023 | Tobias Rosefeldt (Humbold Universität Berlin) |
Kants hylomorphistische Konzeption von Autonomie |
Abstract |
||
03.05.2023 | Eline Gerritsen (Universität Hamburg) |
TBA 17:15 - 18:45 Uhr |
Abstract TBA |
||
24.05.2023 |
Franziska Dübgen |
TBA |
Abstract TBA |
||
07.06.2023 | Gerhard Thonhauser (Technische Universität Darmstadt) |
Politische Phänomenologie: Zur Politisierung der Phänomenologie im Nachkriegsfrankreich |
Abstract |
||
21.06.2023 | Michael Della Rocca (Yale University) |
TBA 17:15 - 18:45 Uhr |
Abstract TBA |
||
05.07.2023 | Fatema Amijee (University of British Columbia) |
TBA |
Abstract TBA |
Das Institutskolloquium im Sommersemester 2023 wird organisiert von Dr. Marie Wuth.
Email: marie.wuth"AT"uni-hamburg.de